48,565 research outputs found

    Phonographic neighbors, not orthographic neighbors, determine word naming latencies

    Get PDF
    The orthographic neighborhood size (N) of a word—the number of words that can be formed from that word by replacing one letter with another in its place—has been found to have facilitatory effects in word naming. The orthographic neighborhood hypothesis attributes this facilitation to interactive effects. A phonographic neighborhood hypothesis, in contrast, attributes the effect to lexical print-sound conversion. According to the phonographic neighborhood hypothesis, phonographic neighbors (words differing in one letter and one phoneme, e.g., stove and stone) should facilitate naming, and other orthographic neighbors (e.g., stove and shove) should not. The predictions of these two hypotheses are tested. Unique facilitatory phonographic N effects were found in four sets of word naming mega-study data, along with an absence of facilitatory orthographic N effects. These results implicate print-sound conversion—based on consistent phonology—in neighborhood effects rather than word-letter feedback

    Modeling lexical decision : the form of frequency and diversity effects

    Get PDF
    What is the root cause of word frequency effects on lexical decision times? W. S. Murray and K. I. Forster (2004) argued that such effects are linear in rank frequency, consistent with a serial search model of lexical access. In this article, the authors (a) describe a method of testing models of such effects that takes into account the possibility of parametric overfitting; (b) illustrate the effect of corpus choice on estimates of rank frequency; (c) give derivations of nine functional forms as predictions of models of lexical decision; (d) detail the assessment of these models and the rank model against existing data regarding the functional form of frequency effects; and (e) report further assessments using contextual diversity, a factor confounded with word frequency. The relationship between the occurrence distribution of words and lexical decision latencies to those words does not appear compatible with the rank hypothesis, undermining the case for serial search models of lexical access. Three transformations of contextual diversity based on extensions of instance models do, however, remain as plausible explanations of the effect

    Methods of testing and diagnosing model error : dual and single route cascaded models of reading aloud

    Get PDF
    Models of visual word recognition have been assessed by both factorial and regression approaches. Factorial approaches tend to provide a relatively weak test of models, and regression approaches give little indication of the sources of models’ mispredictions, especially when parameters are not optimal. A new alternative method, involving regression on model error, combines these two approaches with parameter optimization. The method is illustrated with respect to the dual route cascaded model of reading aloud. In contrast to previous investigations, this method provides clear evidence that there are parameter-independent problems with the model, and identifies two specific sources of misprediction made by model

    Measuring Extinction Curves of Lensing Galaxies

    Full text link
    We critique the method of constructing extinction curves of lensing galaxies using multiply imaged QSOs. If one of the two QSO images is lightly reddened or if the dust along both sightlines has the same properties then the method works well and produces an extinction curve for the lensing galaxy. These cases are likely rare and hard to confirm. However, if the dust along each sightline has different properties then the resulting curve is no longer a measurement of extinction. Instead, it is a measurement of the difference between two extinction curves. This "lens difference curve'' does contain information about the dust properties, but extracting a meaningful extinction curve is not possible without additional, currently unknown information. As a quantitative example, we show that the combination of two Cardelli, Clayton, & Mathis (CCM) type extinction curves having different values of R(V) will produce a CCM extinction curve with a value of R(V) which is dependent on the individual R(V) values and the ratio of V band extinctions. The resulting lens difference curve is not an average of the dust along the two sightlines. We find that lens difference curves with any value of R(V), even negative values, can be produced by a combination of two reddened sightlines with different CCM extinction curves with R(V) values consistent with Milky Way dust (2.1 < R(V) < 5.6). This may explain extreme values of R(V) inferred by this method in previous studies. But lens difference curves with more normal values of R(V) are just as likely to be composed of two dust extinction curves with R(V) values different than that of the lens difference curve. While it is not possible to determine the individual extinction curves making up a lens difference curve, there is information about a galaxy's dust contained in the lens difference curves.Comment: 15 pages, 4 figues, ApJ in pres

    A Short Wavelength GigaHertz Clocked Fiber-Optic Quantum Key Distribution System

    Full text link
    A quantum key distribution system has been developed, using standard telecommunications optical fiber, which is capable of operating at clock rates of greater than 1 GHz. The quantum key distribution system implements a polarization encoded version of the B92 protocol. The system employs vertical-cavity surface-emitting lasers with emission wavelengths of 850 nm as weak coherent light sources, and silicon single photon avalanche diodes as the single photon detectors. A distributed feedback laser of emission wavelength 1.3 micro-metres, and a linear gain germanium avalanche photodiode was used to optically synchronize individual photons over the standard telecommunications fiber. The quantum key distribution system exhibited a quantum bit error rate of 1.4%, and an estimated net bit rate greater than 100,000 bits-per-second for a 4.2 km transmission range. For a 10 km fiber range a quantum bit error rate of 2.1%, and estimated net bit rate of greater than 7,000 bits-per-second was achieved.Comment: Pre-press versio

    Age Related Changes in Cerebrovascular Reactivity and Its Relationship to Global Brain Structure

    Get PDF
    ACKNOWLEDGMENTS This study was funded by Alzheimer’s Research UK (ARUK) and the Aberdeen Biomedical Imaging Centre, University of Aberdeen. GDW, ADM and CS are part of the SINASPE collaboration (Scottish Imaging Network - A Platform for Scientific Excellence www.SINAPSE.ac.uk). The authors thank Gordon Buchan, Baljit Jagpal, Nichola Crouch, Beverly Maclennan and Katrina Klaasen for their help with running the experiment and Dawn Younie and Teresa Morris for their help with recruitment and scheduling. We also thank the residents of Aberdeen and Aberdeenshire, and further afield, for their generous participation.Peer reviewedPublisher PD
    corecore